Demonstration of a robust insertion loss measuring approach for low-loss silicon photonic devices
نویسندگان
چکیده
منابع مشابه
Realisation of ultra-low loss photonic crystal slab waveguide devices
In this paper we demonstrate low loss transmission both above and below the primary band-gap for a photonic crystal (PC) super-prism device consisting of 600 lattice periods. By modifying the refractive index of the holes, we reduce overall insertion loss to just 4.5 dB across the entire visible spectrum. We show that the remaining loss is predominantly due to impedance mismatch at the boundari...
متن کاملSilicon on ultra-low-loss waveguide photonic integration platform.
We demonstrate a novel integrated silicon and ultra-low-loss Si3N4 waveguide platform. Coupling between layers is achieved with (0.4 ± 0.2) dB of loss per transition and a 20 nm 3-dB bandwidth for one tapered coupler design and with (0.8 ± 0.2) dB of loss per transition and a 100 nm 3-dB bandwidth for another. The minimum propagation loss measured in the ultra-low-loss waveguides is 1.2 dB/m in...
متن کاملLow-loss one-dimensional photonic bandgap filter in (110) silicon.
A free-space silicon one-dimensional photonic bandgap optical filter is designed and fabricated. A two-stage (110) wafer etching process is employed to form the extremely vertical, smooth, and high-aspect-ratio features that are essential for good optical properties. The (111) oriented planes of the wafer form <0.01 degrees off-vertical trenches that make up the Fabry-Perot filter. A simulation...
متن کاملIntegrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials
Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully c...
متن کاملDesign of a Photonic Bandgap Fiber with Optimized Parameters to Achieve Ultra-Low Confinement Loss
In this paper, a novel design of all-solid photonic bandgap fiber with ultra-low confinement loss is proposed. The confinement loss is reduced remarkably by managing the number of rods rings, up-doping level, pitch value, and rods diameters. Moreover, the designed PCF shows ultra-flattened dispersion in L- and U-band. Furthermore, a new design, based on introducing of an extra ring of air h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2019
ISSN: 1094-4087
DOI: 10.1364/oe.27.019827